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MEAN AND VARIANCE OF THE CORRELATION
MAGNITUDE OF RANDOM AND PSEUDONOISE SEQUENCES

INTRODUCTION

The mean or expected value and the variance of the absolute value or magnitude of
the correlation between two equal-length independent random sequences are derived for
all unique bit-integral relative phase conditions. These are then compared with the same
measures for the full-period correlation between pairs of certain specific types of pseu-
donoise (PN) sequences which have been applied extensively in spread-spectrum radio-
communications systems. The study of independent random sequences reported here
provides a long-needed point-of-reference for designers of spread-spectrum systems, be-
cause the autocorrelation and crosscorrelation properties of candidate PN sequences may
now be compared with the same quantities derived for fundamental random sequences.
Correlation detectors exist which function on the basis of the magnitude of correlation
between a receiver input and an internally generated reference sequence. The treatment
of random sequences presented here permits evaluation of the performance characteristics
of such detectors during periods of noise-only input.

Design studies, validated by measurements of hardware implementation, have proved
that differentially coherent phase-shift-keyed (DPSK) modulation formats permit realiza-
tion of a relatively high communications efficiency for digital radio-communications sys-
tems when interference is an insignificant problem. An important motivation for the
development of spread-spectrum techniques stems from the need to mitigate the effects
of severe electromagnetic interference. Spread-spectrum systems have been developed
which reduce interference significantly and approach the same communications effi-
ciencies demonstrated by DPSK systems.

Spread-spectrum systems employ an encoding digital bit stream upon which base-
band informational data are impressed as a modulation. The baseband information can be
recovered in the demodulation process only by correlation with a properly synchronized
replica of the encoding signal; however the correlation process permits a discrimination
against the uncorrelated intervening interference. Certain reproducible, deterministic,
pseudorandom sequences which provide the wideband low-power-density encoding signals
needed for such systems tend to optimize the use of the communications capacity offered
by a channel with noise and interference. These sequences have statistical properties
similar to noise and hence are known as pseudonoise (PN) sequences.

The usefulness of PN sequences as codes in spread-spectrum communications depends
on both their individual autocorrelation and their joint crosscorrelation properties. Auto-
correlation properties are important for assuring rapid and proper synchronization of the
incoming signal with the locally generated replica of the PN encoding sequence. To
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BEARCE AND ZIFFER

perform the synchronization, a scanning or time search between the incoming signal and
the local PN sequence (often generated by a binary shift-register code generator) is re-
quired. Sequences with off-peak autocorrelation values comparable to the main correla-
tion peak are undesirable, because they tend to confuse the synchronization process and
prevent the full interference discrimination or processing gain realizable with proper syn-
chronization. The crosscorrelation properties of the sequences are of considerable signif-
icance in multiplexing applications in which many communications systems must operate
in a common frequency channel, with each communication link employing a different
PN sequence. The crosscorrelation between any two sequences used in the system must
be sufficiently low to provide the particular amount of interference isolation required
between the multiplexed channels for satisfactory operation.

Prior studies by others have considered the statistical nature of only the correlation
function itself for various sequences. However the properties of the absolute value of the
correlation function are often of primary interest in applications such as spread-spectrum
communications, where a strong negative correlation is equally as significant as a strong
positive correlation. Gold [1, 2] has developed a method of selecting certain special
maximal-length linear PN sequences which he used in pairs and called preferred pairs. A
maximal-length sequence is the longest which can be repetitively generated by a given size
code generator. The least upper bound of the absolute values (or magnitudes) for the
crosscorrelation of these maximal-length preferred pairs is better (smaller) than for any
other two arbitrarily chosen maximals of the same length (except for some minor excep-
tions which have peaks only slightly less than that bound). Because these special codes
were originally identified by Gold and are most often used in sets of two, they are com-
monly referred to as Gold pairs. Further, and of considerable significance for practical
applications, Gold [1, 2] proved that these same low crosscorrelation magnitude bounds
exist for large families or related encoding sequences, known as Gold code families, where
each member of a family may be generated by forming modulo-2 linear combinations
of a Gold pair of sequences. Such codes have the same period as the Gold pair used to
generate them. The bound for the magnitude of crosscorrelation between any two mem-
bers of a Gold family of sequences thus can be characterized by just the bound appro-
priate for the Gold pair used to generate the family.

Since a statistical analysis of the properties of the magnitude of correlation for all
possible phase shifts of two purely random sequences apparently has not been developed
and presented previously, expressions are derived for the expected value and variance of
the full-period correlation magnitude values for each relative phase relationship between
a synchronized random sequence and another independent code of the same length. (If
a binary sequence is random and independent of another, the expected correlation
magnitude between the two is independent of the specific nature of the other, because
in either case the probability of matching any pair of bits is 1/2. Furthermore the ex-
pected crosscorrelation magnitudes for two independent random sequences is therefore
the same as their individual expected autocorrelation magnitudes, for the same reasons.)
Random code lengths corresponding to maximal-length PN sequences have been selected
for study to facilitate a direct comparison of their respective characteristics. The analysis
provided by this study is applicable to bit-synchronized data with negligibly small
Doppler-frequency effects. The crossspectral correlation characteristics which are discussed
in Figs. 3 and 4 for nonsynchronized data with significant relative Doppler-frequency
shifts are not treated here.
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DERIVATION OF THE EXPECTED VALUE FOR THE MAGNITUDE OF
THE CORRELATION BETWEEN TWO RANDOM SEQUENCES

For time-dependent periodic functions f(t) and g(t) of period T, the normalized
crosscorrelation R(r) between them is

1 T
R(r) -T f(t)g(t +r) dt. (1)

0

The functions f(t) and g(t) of the continuous variable t are now replaced with the func-
tions a(i) and b(i) of a discrete variable i (which is a common form for describing se-
quences), so that the crosscorrelation may be expressed in the analogous discrete form

RU) = a(i)b(i + j), (2)

where the a(i) and b(i + j) values are taken from the set {+1, -1} and L is the number
of discrete elements in the period. Hence

a(i)b(i + j) = +1, if a(i) = b(i + j),
(3)

= -1, if a(i) HL b(i + j)

If n represents the number of agreements, then L - n will represent the number of
disagreements; and R(j) can be written as

R(j) = L 0 E a(i)b(i +j) + E a(i)b(i +j (4)

a(i) = b(i +j) a(i) $ b(i + j)

K L FL E a(i)b(i+j) - b la(i)b(i +)j (5)

a(i) = b(i + j) a(i) $ b(i + j)

= L [n-(L-n)] * (6)

The expression in brackets in (6) is the form given by Gold [1, 2] for the correlation,
namely, the number of agreements minus the number of disagreements. The multiplicative
factor (1iL) normalizes the correlation. Following Gold [1, 2] 0 will be used to represent
the normalized discrete correlation 0(n), (where the discrete variable n here represents the
number of agreements between the two sequences, rather than a particular phase shift of
the second sequence). Thus

0(n) = (2n/L) - 1. (7)
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Given two sequences of the same length, if at least one sequence is random and
independent of the other, the probability of an agreement between any two correspond-
ing bits is 1/2. Hence the probability of n agreements arranged in a particular order is
(1/2)n. Similarly the probability of L - n disagreements occurring in a particular order is
(1/2 )L-n. With use of the binomial coefficient, namely,

(L)= L = L! L (8)
n -_n!(L -n)! = (L -n)! n! = (L -n)(8

which is the number of different ways of obtaining n agreements and L - n disagreements,
the probability of getting exactly n agreements in any order is

p(n) = L)(1)n (1)L-

(L)(1)L (9)

The expected value E(IO ), or mean ju, of the absolute value of the correlation is the
sum of each of the possible values of 10(n)I, weighted by the corresponding probability
of occurrence for each case. Thus

L

Ei = E10 = E 10(n)LP(n).

n=0

= L I2n -l[(L)(L]

( ) =On) (10
n=0

n =0

By definition of the absolute value,

-2n _ 1 = 1 2n if 0< n < K,
L L'

(11)
2n= -n_ 1, ifK + 1 < n < L,

where

K 2 Lodd,
(12)

= 2-2 L even.2'
4



NRL REPORT 8068

Thus (10) can be written

2n)(L) +K

Y (1 -n=0

Let m = L - n; then, by use of (8), the second summation in (13) becomes

)(L) m= 

M=L-(K+l)

[2(L-m _](L)
I L 1m)

(L\
VmJ

L odd,
mTK( L)

L even,= E l
m=K+l 

which, after the index m is replaced with n, becomes

L odd,
L (2n 1) (L)

= K+1(2n)(L) =

n=0

L\
n/

2n)(L)

L odd or even.

The summand for n = K + 1 is neglected for L even because this summand is 0; that is, if

n = K + 1 = (th e = 2
then

(1- 2n) 
L-)=

L 2 ) 0.
(15)

5

± (2 1)(L) ]
n=K+1

(13)

/ 2nT L-
n=K+l

L even,

(14)

'4 = (1)L

- 2m) (L ),
L m

K 2n) (L),
= Y' (l - -f n

n=O

K 2n

= Y (I - -f)(
n=O
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Substitution of (14) in (13) gives

= (2)L [2fE (1L2)(L)]

= (1) FL ( n ) ~ E L (n ) (16)

where in the second summation the lower index becomes 1 instead of 0 because n is a
multiplicative factor.

The binomial expansion

(a+ b =()aP( bi (17)

becomes, for a = b 1/2, P

i 2

-,Y(i) (18)
i= 0

which can be written

L(P) Y (19)

In the notation desired here, (19) is written as

L L L)

n=0( -= ( ) + E ( ) (20)
which, by use of (12) and m = L - n, can be written as

6
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L (L )_

= ( n)
n=0

L odd,
mK L)

(21)

E (L ) L
21 M L even.

m=K+1

Then, if the arbitrary index m is replaced by n and the order of summation, is reversed,
(21) becomes

2L = + (L) L (L)_

= (L) + K+1 (L) 

L odd,

(22)

L even,

or

K=(L-1 )12
= 2 ( n L)odd

K=(L-2)/2 L)
= 2 1 kn)

(23)

+ ( L 2), L even.

Also, from the definition of the binomial coefficient,

L(n) L [n!iL - n)!]

(L - 1)!

(ns- 1)! [(L -(1) - (n4-n()y!

Use of (23) and (24) in (16) yields

7

(24)
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= (-)L1 [ 2L _2 E (L - 1)

= (1)L- [
- L/2) Kn=1

(L-1
(n-1)

(25)

I , L even.

M = n - 1

is introduced, then

K L-10

n= -

(L-1)
AL m (27)

where

K - 1 = 2 ,Lodd,

(28)

= 2 , L even.

When L is even, L - 1 is odd, and vice versa; therefore if (23),
which L is replaced by L - 1, it can be written as

2L-1 = 2 L (L 1)

n=0 _

(L -2)/
= 2 E (Ln- ) 

n= 0

L-1
+ i

Li-1
2

is applied, to the case in

L odd,

(29)

L even.

Thus

(L-1 = 2L-)
M) (L 1) Lodd,

2/

and

8

, L odd,

If

(26)
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VI I1

221~ (b1) = 2LE-!:(L - )
2 T M ) L M0(M)
M=S ((2

Substituting (30) into (25) and using (27),

= 2L- -
L-

2

2 , L even.
L -32

2() ~~~(30)

E ( L -1 2L-1 odd,- 1

(31)

'4 = (1_)L21

= (-2)L- [ 2 L -1 C)]-2 ' ,Leven.

2 /

For L even, the expression in brackets may be simplified using (8):

L L i.
( 2 ) -22 -

4 (L)

,(L) (2L
= (12)L

(L - 1)! L!

I) () I [()]2

L!
[IL ~ 1 2,L even.[(L) ]2 

= (1)L

Thus

(32)

u. = E(10 ) = L odd,

(2)
2- L , L even.

2

(33)

9

M = �L-1

2
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In expanded form p = 1 for L = 1 and for L > 2,

(2()6) * L -1) L odd,

(34)

(1)(3)(5)- (LL),L even.

By use of Stirling's approximation for factorials namely,

m! - e-mmm(21rm)1/ 2, (35)

the following approximate evaluations for (33), valid for L > > 1, can be obtained;

(1/2)' [ e-m mm(2,ffm)1 /2] (2 )1/j~~r/2 m~ 112 21/

[em /2 (m~fl 2 (n) 1/2 2 \rm

where

2<m = L-1, Lodd,

= L, L even. (36)

This approximate relationship is particularly useful when L is very large, because the
direct evaluation of (34) takes excessive computer time. Table 1 presents a test program
for comparing (33), or (34), with (36) for several sequences of period L = 2N - 1, where
N is a positive integer corresponding to the number of stages in a binary shift-register
code generator. The results, shown in Table 2, indicate that (36) becomes a progressively
better approximation as N (and L) increases and that the error is negligible (less than
0.0003 dB) for L = 10,000 or more.

DERIVATION OF THE VARIANCE OF THE MAGNITUDE OF THE
CORRELATION BETWEEN TWO RANDOM SEQUENCES

The variance 02 of the absolute value of the correlation about the mean value is de-
fined as the sum of the squares of the deviations from the mean, weighted by the prob-
ability of occurrence for each case. Thus, by use of (7) and (10) and, by definition,

L

2 p(n) = 1,
n=0

10
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Table 1 - FORTRAN Program to Validate the Approximation Given by (36)

11

00100 PROGRAM STIRL(OUTPUT)
00110 PRINT,. N L TRUE APPROX. ERROR.,
00120+', * VALUE VALUE IN DBUP,
00130 DO 10 N=3,17
00140 L=2**N-1
00150 CALL AVT(LE)
00160 CALL XRVT(LT)
00170 DDB=2 0. ALOG1O(TE)
00180 PRINT 2ONPLEqTPDDB
00190 10 CONTINUE
00200 20 FURMAT(2IB.2F10.69E12.5)
)0210 END
00220C
0023OC
00240 SUBRULTINE AVT(L!E)
00250 J=L
00260 E=L'2
00270 K=E*2.
0020 IF(K.EQ.L)J=J+1
00290 K=O
0030 0J=(J-I)/2
00310 E=1.
00320 DO 10 I=1,J
00330 X=K=K+1 $ Y=K=K+1
00340 E=E*X/Y
00350 10 CONTINUE
00360 RETURN
00370 END
003800
003900
00400 SUBROUTINE XRVT(LT)
00410 B=0.636619772365755
00420 J=L
00430 R=L'2
00440 K=A*2.
00450 IF(K.EQ.L)J=J+1
00460 R=J-1
00470 T=SQRTCB'A)
00480 RETURN
00490 END
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Table 2 - Computed Results of the Validation
Program of Table 1

N L TRUE APPROX.
VALUE VALUE

3 7
4 15
5 31
6 63
7 127
8 255
9 511
10 1023
11 2047
12 4095
13 8191
14 16383
15 32767
16 65535
17 131071

.312500

.209473

.144464

.100924

.070940

.050014

.035314

.024952

.017637

.012469

.008816

.006234

.004408

.003117

.002204

.325735

.213244

.145673

.101331

.071081

.050064

.035331

.024958

.017640

.012470

.008817

.006234

.004408

.003117

.002204

ERROR
IN DP

.36029E+00

.15497E+00

.72369E-01

.35022E-01

.17234E-01

.85491E-02

.42578E-02

.21247E-02

.10613E-02

.53040E-03

.26514E-03

.13255E-03

.66273E-04

.33136E-04

.16570E-04

the variance is

L
02 = E (IO(n)l -_Q)2 p(n)

n=0

[O(n)]2p(n) -
L

2PLIO(n)jp(n) +
n=0

L
= 02 (n)p(n) - 2,(,u) + u2 (1)

n=0

L
= 1 02 (n)p(n) _ pA2

n=0

12

L

= T
n=0

(37)

L
1A2 T p(n)

n=0

(38)
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02 = f(2f-i) 2 ()(L )L g2

n=0

- 4n + 1] (L)(T1)L 2
L[4n2

= 1 - +1 2 ()- L n (L)

where the index has been shifted from n = 0 to n = 1 to account for the zero-value
summand. By use of (8) the last summation becomes

Ln (L
T- I 

L nL!

= Ln!(L - n)!

L (L - 1)!

= T (n-1)![L-1-(n-1)]!

L L - 1\
= E1 (n-)

n= 1

= (L-1)! + Jn-1
(L 1)! n=2\n- 

(40)
L n - 12 )

From (19) and (8)

2 = n!(L - n)!

L

= +21 (
L!: n= 

(41)

13

(39)

L (L)
= 1 +

T n
n=1

L n2 (L)

E -2 nn=1 L
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When applied to the case L = P - 1 and q = n + 1, (41) becomes

P-(
2P1= 1 + 21 (Pn i)

n= 1

= 1 + (q-1)
q=

which, by an exchange of arbitrary parameters, can be rewritten as

E(LL-1) 2L-1 1

Substitution of (43) into (40) gives

E n(L_ 2L-1,
L n

which, when substituted into (39), gives

11L- L 2 kn
(2 ) n~i L2 (n)

L{ LA_ n (L- )_ _1_2
\2/ nIL (n -1)!(L-n)!

n=1

J-1 J

m=0

(M + 1)(M) - 1 _ M2,

where J=L- 1andM=n- 1. Then

L(2 [ E M (M) E(M)]1 -

From (44) and (19), (45) simplifies to

2 = 1(1)jL 1

which further simplifies to

14

(42)

(43)

(44)

(45)

= Li (1)

2J2j-1 + 2j 1 - 11 ,I I -
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02 = 1 (J +2) - 1 - 2
L

L L+i1_I-p
L

or finally

(46)

DETERMINATION OF THE EXPECTED VALUE FOR THE MAGNITUDE OF
CORRELATION BETWEEN TWO GOLD-PAIR SEQUENCES

To obtain, for comparison, the distinguishing characteristics between purely random
and PN Gold codes, the expected value and variance of the magnitude of crosscorrelation
for a preferred pair of PN Gold sequences, over the various possible code-phase combina-
tions, is also determined. Again, as in (10), where now L = 2 - 1, the mean or ex-
pected value is

1 1g = 2Z 1IO~pj.

But now

pi =- i(N-1 

(47)

(48)

where fi is the frequency or number of occurrences of a particular value of 10ll over the
period. Since Oi is a deterministic function for Gold pairs, the fi can be uniquely determined.

Gold [ 5] has shown that the correlation for a Gold pair when N is odd can only be
one of three specific values, namely,

-1 [-2 (N+1)/2 -112N-) 

02 = [ 2 (N+1)/2 -112N-) 

03 = 12N-1,

with frequencies of occurrence

15

au2 =1--12L

1 2

- - E(I 0 I-

(49a)

(49b)

(49c)
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f, = 2N-2 - 2 (N-3)/2 (50a)

f2 = 2 N-2 + 2 (N-3)12 , (50b)

f3 = 2N-1 - 1, N odd. (50c)

Substitution of (48), (49), and (50) into (47) gives for N odd

[2(N+1)12 + 1] [2N-2 - 2(N-3)/2]
g-= (2 N - 1)2

+ [2 (N+1)/2 + 1] [2 N-2 + 2 (N-3)/2] + 2 N-1 - 1
(2N - 1)2 (2 N - 1)2

g = [2(3N-1)/2 - 2 (N-1)/2 + 2 N-1 - 1]/(2N - 1)2, N odd. (51)

Sherman [3] provides the distribution for N even, where N = 6 + 4X and X = 0,
1, 2, .... (Pairs of maximal length sequences with three-level crosscorrelation values do
not exist for N = 0, 4, 8, 12, .... ) In this case the three correlation values and frequen-
cies of occurrence are

01 = [- 2(N+2)I2 - 1]/(2 N - 1), (52a)

02 = [2(N+2)/2 - 1]/(2 N - 1) (52b)

03 = -1/( 2 N - 1), (52c)

with

= 2 N-3 - 2 (N-4)/2 (53a)

f2 = 2 N-3 + 2 (N-4)/2, (53b)

f 3 = 3(2N-2) - 1, N 4; X =0, 1, 2, 3, (53c)

Substitution of (48), (52), and (53) into (47) gives

[2 N-3 - 2 (N-4)12] [2(N+2)/2 + 11
g9 = (2 N - 1)2

+ [2N-3 + 2 (N-4)/2] [2(N+2)/2 - 1] + 3 (2 N-2) - 1
(2N - 1)2 (2N - 1)2

Mg = [2(3N-2)/2 - 2 (N-2)/2 + 3(2 N-2) - 1]/( 2 N - 1)2, N = 6 + 4X; X 0, 1, 2,.

(54)

16
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DETERMINATION OF THE VARIANCE OF THE MAGNITUDE OF THE
CORRELATION BETWEEN TWO GOLD-PAIR SEQUENCES

The variance of the magnitude of the correlation function for PN Gold pairs can be
obtained in a similar manner. Thus, for N odd, by use of (38), (48), (49), and (50),

2 20 'u.0 ipi- pi

[2(N+1)/2 + 1] [2 N-2 - 2 (N-3)12]

(2N -1)3

[2(N+1)/2 - 1]2

(2 N -1)3
[2N-2 + 2 (N-3)/2] + 2 N-1 - 1 2

(2N - )3 pi-

(55)

For N = 6 + 4X, X = 0, 1, 2, ... , by use of (38), (48), (52), and (53),

2 - [ 2 (N+2)12 + 1]2
g (2N - 1)3 [2N-3 - 2 (N-4)/2]

+ [2 (N+2)/2 - 1]2

(2 N -1)3
[2 N-3 + 2(N-4)/2] + 3 (2 N-2) - 1 2

(2N -1)3 - U

2 - 2 2N 2N 1 2 N = 6 + 4X, X = 0, 1, 2,....

The result is that (55) and (56) are of the same form.

THE CROSSCORRELATION AND OFF-PEAK AUTOCORRELATION
UPPER BOUND FOR THE MEMBERS OF GOLD CODE FAMILIES

As previously stated, Gold [1,2] proved that the maximum magnitude of the cross-
correlation which can occur for a preferred pair of maximal-length sequences is also the
maximum crosscorrelation magnitude or bound that will be achieved for any combination
of two members from the family of sequences known as Gold-family codes. A method
of generating a Gold family of sequences is diagrammed in Fig. 1. Code A and code B
are maximal-length linear sequences which constitute a preferred or Gold pair. Each has
a period of length 2N - 1, for N-stage digital shift registers. A member Ci of the Gold
family corresponding to codes A and B can be formed by the modulo-2 addition of code A
with a particular phase of code B. The sequences formed in this manner belong to the
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C-1

rr
;::

(56)



BEARCE AND ZIFFER

(MODULO-2 ADDITION)
CODE A

GOLD-FAMILY
+ 1- CODES, C;

COEB

Fig. 1-A method of generating members of a Gold family of codes
such that each member has a bounded crosscorrelation magnitude be-
tween itself and any other member within the family. rg is an integral
number i of clock cycles of time delay for each member Ci of the
family, where i = 1, 2, ... , 2N - 1. Codes A and B are selected (Gold-
Pair) N-stage shift-register-generated maximal-length linear sequences
which are also members of the Gold code family.

nonmaximal class of codes; however, the two maximal-length sequences used to generate
the other members of the family are themselves included in the family. Since there are
2N - 1 possible phases of code B, there are 2 N + 1 members in the Gold family.

Golomb [6] gives the off-peak normalized autocorrelation values for a maximal-length
linear sequence, such as used in generating a Gold code family (such as code A or code B),
which are the same low value (the negative reciprocal of the sequence length), irrespective
of the relative code phase. Thus the off-peak normalized autocorrelation magnitudes for
either code A or code B are

101 = 1/(2N-1). (57)

The off-peak normalized autocorrelation magnitudes for the other members of the Gold
family are not as ideal; however Gold has stated in a private communication that the
off-peak autocorrelation values for all codes in a Gold family are bounded in magnitude
and that this upper bound for any one family member is the same as the crosscorrelation
magnitude bound for any two family members. This bound is known as the Gold bound.
The largest crosscorrelation magnitude of the Gold pair used in generating the family can
thus be used to characterize the crosscorrelation off-peak and autocorrelation bounds for
the whole family of sequences.

The Gold bound for the normalized crosscorrelation and off-peak autocorrelation
magnitudes over the full period for a Gold pair (or for any two members of the associ-
ated family of codes) is given by

101 < [2(N+1)/2 + 1]/(2N - 1), N odd,

< [2(N+2)/2 + 1i/(2N - 1), N even. (58)

With N odd, this upper bound is a sharp bound in the sense that some relative phase shift
of the pairs of sequences can be found that provides a magnitude of correlation which is

18
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equal to the bound. With N even, however, there are some non-Gold-pair sequence com-
binations which yield maximum values for 10 1 which are just slightly less than the bound
indicated in (58).

A COMPARISON OF PSEUDONOISE GOLD-PAIR CODES AND INDEPENDENT
RANDOM SEQUENCES

A FORTRAN computer program has been devised to evaluate the several expressions
providing the mean, variance, and bounds, where applicable, for two random sequences
and Gold-pair sequences of lengths L = 2N - 1. The program listing is provided as
Table 3. Table 4, Fig. 2, and Fig. 3 give the results as computed by the program.
The program is based on equations (34), (36), (46), (51), (54), (55), (56), (57), and (58).
The approximate relation given in (36), based on Stirling's approximation, is used when
the length is greater than 10,000 in order to avoid excessive computation time.

The term Gold bound as used here is synonymous with bounds on the magnitudes of
the normalized crosscorrelation of a Gold pair (or for the autocorrelation or crosscorrelation

N

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
I I I I i I I I I I I I I I I I I I

0

-10

EV

z
F
c-

0-w
I-

-Jcc

-20

-30

-40

-50

-60
1o0 102 lo 104 105 106

CODE LENGTH=2N- 1

Fig. 2-The bounds and expected magnitudes of the normalized full-period autocorrelation
and crosscorrelation of Gold family code sequences. (0 dB represents the largest possible
correlation magnitude which occurs when there is either total agreement or disagreement
among corresponding bits of the sequences.)
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Table 3- FORTRAN Program for Generating Table 4

00100 PROGRAM BCORR (OUTPUT)
00110 PRINT 200
00120 SQ2=SQRT(2.)
00130 DO 10 N=3,23
00140 G=N
00150 H=N'2
00160 H=H-2.
00170 F=N'4
00180 F=F-4.
00190 L=-1+2--N
00200 P=L
00210 E=0.5-(1.+N)
00220 T=2.nE
00230 IF(G.EQ.H)T=T+SQ2
00240 T=T+1.
00250 GB=T/P
00260 GBD=20. *ALOG10 (GB)
00270 CALL AVTHETA(LRM)
00280 RMD=20. *ALOG1 0 (RM)
00290 RV=1 .'L-RM*RM
00300 U2SV=20. *ALOG1 0 (RM+2. *SORT CRV))
00310 IF (6. EQ. H) CALL EVEN (N SGM, SV)
00320 IF (. NE. H) CALL ODD (N, GM GV)
00330 GMD=20. *ALOG1 0 (GM)
00340 U1 SV=20. *ALOGI 0 (GMSl+SQRT (GV>)
00350 GAD=20.*AL[G1O(1.0 P)
00360 PRINT 210,N
00370 IF(F.EQ.G)PRINT 230
00380 IF(F.NE.G)PRINT 240
00390 IF(F.NE.G)PRINT 250 P5GSBGMGVRMRVGADGBD.6MD.UISV.RMD!L2SV
00400 IF (F. EQ. G)PRINT 255iP, GB, RMRV'AD GfiD 'BD, RMD U2ESV
00410 10 CONTINUE
00420 PRINT 260
00430 200 FORMAT (18X! *EXPECTED (AUTO'CROSS) CORRELATION MAGNITTUDES.!'!
00440+I15X!BETWEEN PAIRS OF MAXIMAL GOLD AND RANDOM SEQUIENCES!/,f',
00450+2X,! *N*- 5X !CODE *, ! 3 (7X, *GOLD.) ! 2 (5X !*RANDOM- .)/
00460+6X !*LENGTH- !7X !*BOUND- !7X !*MEAN- !3X !*VARIANCE- !7X,

00470+*MEAN*-3X,*VARIANCE-!,",!5X!*GOLD AUTO-DB-!7X,
0048 0+-DB-. 9X !*DB*- 5X, !U1SV (DE) TX7X!
00490+*DB, S3X, *U2SV (DB) .*2Hn,')
00500 210 FORMhT(1XIE2iA)
00510 230 FORMAT( 1H.A)
00520 240 FORMAT(* *!')

00530 250 FORMAT(F8. 3X9F9.7T4F11.7T,/FF17.2,F9.2,F11.a2FlS.2!F9.2,F13 2,')
00540 255 FORMAT(FS. !3XF9.7T22X,2F11.T7,/F17.2,F9.2,a2XFll.2F1I3.2,)
00550 260 FORMAT(, C iX H 1 H- IF N IS A MULTIPLE OF 4.*,
00560+- THE NUMBER OF AVAILABLE GOLD PAIRS IS LIMITED.*."/!
0057O+1Xp2H..,. UlSV = UPPER 1-SIGMA VALUE.,
00580+.; U2SV = UPPER 2-SIGMA VALUE*P/",
00590+- NOTE: CORRELATION BOUND = *S32H(2..((N+1)'2)+1)/(2..N-1 ! N ODD,', 
00600+25X!35H= (2+<((N+2)/2)+1)i(2..N-1)! N EVEN,",y
00610+18X!*LENGTH = E-!2H+#! N-1+- !/)
00620 END
0063 0C

20
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Table 3 (Continued) - FORTRAN for Generating Table 4

00640C =
00650 SUBROUTINE AVTHETFA(LPRM) c

00660 J=L S RM=L'2 $ K=RM-2.
00670 IF(K.EQ.L)J=J+l
00680 IF(L.LT.10000)GO TO 5
00690 RM=SQRT(0. 6366197723657495'/(J-1))
00700 60 TO 20
00710 5 CONTINUE
00720 K=0
00730 J=(J-1)'2
00740 RM=1.
00750 DO 10 I=l!J
-00760 X=K=K+1 $ Y=K=K+1
00770 RM=RM*X'Y
00780 10 CONTINUE
00790 20 CONTINUE
00800 RETURN
00810 END
00820C
00830C
00840 SUBROUTINE ODDIN'GMRGV)
00850 F1=2.r .- N
00860 F2=1.-Fl
00870 F3=2.r .- (l+N)'2)
00880 F4=F3-2.. C--(3N+)/'2)+2. *(-1-N)
00890+-2. *(-2+N)
00900 GM= (F4'F2) 'F2
00910 F5=2.*.(-(N-1)'2)
00920 F6=2. C- (N+3)/2)
00930 GV=(F5+Fl1) 2*(0. 25-F6)
00940 GV=GV+ (F5-F1-)*2*(0. 25+F6)
00950 GV=GV+2. (-2*N-1)-2. *(-3+N)
00960 GV= (GV'F2)'F2)'F2-GM+GM
00970 RETURN
00980 END
00990C
01 OOOC
01010 SUBROUTINE EVEN (N GMG GV)
01020 F1=2...(-N)
01030 F2=1.-F1
01040 F3=2. C(-(2+N)'2)
01050 F4=F3-2. ..- (3N+2)/2)+3. 2.* (-2-N)
01060+-2.E (-2*N)
01070 GM=(F4/F2)/F2
01 080 F5=2. (- (N-2) '2)
01090 F6=2. -- f- ;N+4) '2)
01100 GV=(F5+F1)+2+(0. 125-F6)
01110 GV=GV+ (F5-F1).2. (0. 125+F6)
01120 GV=GV+3. 2.. -(-2*N-2)-2.. (-3.N)
01130 GV=((GV'F2)'F2)'F2-GM.GM
01140 RETURN
01150 END

21
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Table 4 - Expected (Auto/Cross) Correlation Magnitudes Between
Pairs of Maximal Gold and Random Sequences

N CODE GOLD GOLD GOLD RANDOM RANDOM
LENGTH BOUND MEAN VARIANCE MEAN VARIANCE

GOLD AUTO-DB DB DB U1SV(DB) DB U2SV(DB).*

7 .7142857
-16.90 -2.92

15 .6000000
-23.52 -4.44

31 .2903226
-29.83 -10.74

63 .2698413
-35.99 -11.38

127 .1338583
-42.08 -17.47

255 .1294118
-48.13 -17.76

511 .0645793
-54.17 -23.80

1023 .0635386
-60.20 -23.94

2047 . 0317538
-66.22 -29.96

4095 .0315018
-72.25 -30.03

8191 .0157490
-78.27 -36.05

16383 .0156870
-84.29 -36.09

32767 .007843S
-90.31 -42.11

65535 .0078279
-96.33 -42.13

131071 .0039139
-102.35 -48.15

262143 .0039101
-108.37 -48.16

524287 .0019550
-114.39 -54.18

1048575 .0019541
-120.41 -54.18

2097151 .0009770
-126.43 -60.20

4194303 .0009768
-132.45 -60.20

8388607 .0004884
-138.47 -66.22

.3469388
-9.19

.1446410
-16.79

075:3338
-22.46

.0668981
-23.49

.0322877
-E9.82

.0163732
-35.72

.0158768
-35.98

.0078745
-42. 08

.0039523
-48.006

.0039216
-48.13

.0019570
-54.17

.0009794
-60.18

.0009775
-60.20

.0004885
-66.22

.0002443
-72.24

.0002442
-72.25

.0399833 .3125000
-5.24 -10.10

.2094727
-13.58

.0123441 .1444644
-11.84 -16.80

.0104458 .1009237
-15.01 -19.92

.0034602 .0709403
-18.01 -22.98

.0500145
-26. 02

.0009183 .0:353136
-24.07 -29.04

.0007104 . 0249522
-27.33 -32.06

.0002367 . 0176374
-30.10 -35.07

.0124692
-38.08

.0000601 .0088163
-36.12 -41.09

.0000454 .0062339
-29.42 -44.10

.0000151 .0044079
-42.14 -47.12

.0031168
-50.13

.0000038 .0022039
-48.16 -53.14

.0000029 .0015584
-51.47 -56.15

.0000010 .0011019
-54.19 -59.16

.0007792
-62.17

.0000002 .0005510
-60.21 -65.18

.0000002 .0003896
-63.52 -68.19

.0000001 .0002755
-66.23 -71.20

.0452009
-2.64

.0227879
-5.83

.0113881
-8.92

.0056874
-11.98

.0028415
-15.01

.0014201
-18.04

.0007099
-21.05

.0003549
-24.06

.0001774
-27.08

.0000887
-30.09

.0000444
-33.10

.0000222
-S6.11

.0000111
-39.12

.0000055
-42.13

.0000028
-45.14

.0000014
-48.15

.0000007
-51.16

.0000003
-54.17

.0000002
-57.18

.0000001
-60.19

.0000000
-6. e0

* IF N IS A MULTIPLE OF 4, THE NUMBER OF AVAILABLE GOLD PAIRS IS LIMITED.

*. UlSV = UPPER 1-SIGMA VALUE; U2SV = UPPER 2-SIGMA VALUE

NOTE: CORRELATION BOUND = (2C*((N+1)/2)+1)/(2**N-1)! N ODD
= (2..((N+2)'2)+1)'(2*.N-1)p N EVEN

LENGTH = 2E*N-1
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Fig. 3-The bound and expected distribution of the normalized correlation of independent
random sequences. (The expected crosscorrelation magnitudes of Gold-Pair codes are shown
for comparison.)

between any two members of a Gold family of codes). The upper 2o values are equal to
the mean value plus twice the standard deviation, or the square root of the variance. In
the case of random sequences with Gaussian distributions, the upper 2a values are ex-
ceeded with a probability of only 0.025.

Table 4, Fig. 2, and Fig. 3 permit a comparison between the expected properties of
the magnitude of crosscorrelation between PN Gold pairs and pairs of purely random
sequences in relation to the bound determined by Gold given in (58). Several maximal-
length sequences of period L = 2N - 1 are examined, where N is the number of stages in
each of the two binary shift-register code generators. The autocorrelation of independent
random codes is the same as their crosscorrelation. Although the off-peak autocorrelation
magnitudes of Gold-family codes are limited by the Gold bound just as the crosscorrela-
tion magnitudes are, the off-peak autocorrelation magnitudes of all maximal-length se-
quences of the same length are considerably lower. The 0-dB bound for the magnitude
of the autocorrelation or crosscorrelation of random codes occurs whenever corresponding
bits in the two sequences happen to either all agree or all disagree.
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The values of mean magnitude of correlation between Gold pairs for 3 < N < 24
are from about 0 to 4 dB lower than the corresponding mean values for independent
random sequences (where the mean is taken over all of the various possible code phase
conditions to obtain the expected value for code lengths corresponding to those produced
by N-stage shift-register code generators). The expected values also tend to be as much
as 6 to 12 dB below the Gold bound. The superior performance of the Gold codes is
due to their especially high degree of mutual orthogonality. Adding one more stage to a
pair of odd-order Gold code generators allows the production of even-order sequences
with a significantly lower mean magnitude of correlation but with only a slightly lower
variance and bound, whereas adding one more stage to a pair of even-order Gold code
generators provides odd-order sequences with a much lower magnitude of correlation
bound and variance but only a slight improvement or reduction in the mean value. An
indication of the standard deviation for Gold pairs is provided by the la values, which
lie above the mean values by the amount of the standard deviation.

The even-order Gold bound is comparable with the upper 2a values for independent
random codes; hence purely random sequences can be expected to have lower correlation
magnitudes than the maximum for even-order Gold codes of the same length for about
97.5 percent of the cases. However odd-order Gold codes have a sharp bound (meaning
that they can at times achieve the bound) about 2 dB below the upper 2u values for
random sequences; thus independent random sequences can be expected to have larger
magnitudes of crosscorrelation than the maximum for odd-order Gold sequences for more
than 2.5 percent of the cases.

The primary advantage of PN Gold codes in comparison with the independent ran-
dom sequences, in addition to the benefit of a lower expected value, is that the magnitude
of correlation is bounded at a significantly lower value, which decreases even more as
sequences are made longer.

SUMMARY

The magnitude of correlation of purely random sequences has been evaluated to
provide a fundamental point of reference needed for characterizing the relative perform-
ance properties of pseudonoise sequences. Expressions for the mean or expected value
and the variance for the magnitude of the full-period correlation between independent
random sequences and also PN Gold pairs have been determined for code lengths up
through those corresponding to the period of maximal-length sequences from 23-stage
binary shift-register code generators.

The comparison of the crosscorrelation characteristics of independent random se-
quences and PN Gold pairs reveals certain advantages of Gold pairs due to their inherent
mutual orthogonality.

The importance of choosing longer sequences whenever possible is clearly indicated
in all cases; for not only is the expected magnitude of autocorrelation and crosscorrela-
tion decreased thereby, but the variances are also lowered. Longer sequences thus pro-
vide better correlation performance, whether they be purely random or pseudonoise Gold
codes, achieved by the use of more stages in the binary shift-register code generators.
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The analysis of the magnitude of correlation for random sequences provided here is
useful for evaluating the expected performance of signal correlation detectors which func-
tion on the basis of the magnitude of correlation with a reference sequence while they
are operating on noise-only input.

ACKNOWLEDGMENTS

The authors gratefully acknowledge and express appreciation for the helpful com-
ments of Mr. Charles F. White, Dr. Robert Gold, and Mr. William E. Leavitt.

REFERENCES

1. R. Gold, "Optimal Binary Sequences for Spread Spectrum Multiplexing," IEEE
NAECON Proceedings, National Aerospace Electronics Conference, Dayton, Ohio,
p. 173, 1966.

2. R. Gold, "Optimal Binary Sequences for Spread Spectrum Multiplexing," IEEE
Trans. on Information Theory IT-13 (No. 4), 619-621, Oct. 1967.

3. R.J. Sherman, "Generalized Correlation Properties of Gold Codes," Technical Mem-
orandum 230, Philco-Ford Corp., Western Development Laboratories, Palo Alto,
Calif. 94303, Jan. 1974.

4. "GPS/TRIDENT Code Design," Vol. I, Report STI/GPS-051, Stanford Telecom-
munications, Inc., Mountainview, Calif. 94043, Aug. 6, 1975 (prepared for SAMSO,
Los Angeles, under contract F04701-74-C-0310).

5. R. Gold, "Maximal Recursive Sequences with 3-Valued Recursive Cross-Correlation
Functions," IEEE Trans. on Information Theory IT-14 (No. 1), 154-156, Jan.
1968.

6. S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.

25


